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This article illustrates a new and simple approach to the analysis of the effects of diffusion in laminar chaotic
flows. The approach is based upon the definition of two quantities, namely diffusional thickness and area of
diffusional influence, which provide a compact and quantitative description of the spatiotemporal evolution
of partially mixed structures. Several implications follow from this approach: (A) Dispersion in closed chaotic
flows displays nonmonotonic behavior induced by the shrinking of diffusional thickness along the stable
directions. A theoretical explanation of this phenomenon is provided. (B) It is possible to define a characteristic
time corresponding to the blow-up of the geometric interface induced by the diffusional merging of lamellae.
The implications of these results as regards the dynamics of other physicochemical processes such as chemical
reactions are briefly addressed.

1. Introduction

Fluid mixing is a complex phenomenon that controls a variety
of physicochemical processes involving fluid phases such as
chemical reactions, aggregation phenomena, polymerization,
crystallization, etc.1-4 The two basic cooperative mechanisms
are stirring (advection), i.e., the action of a forced velocity field,
and diffusion, which can be molecular and/or turbulent.

Usually (though not invariably), turbulent flow conditions
ensure the fast blending of fluid elements, and rate-limiting
resistances to overall transport of solution components are to
be found in other phenomena that occur along with the mixing
process (e.g., coalescence and breakup, chemical kinetics, and
so on). Conversely, transport in laminar flows is often dominated
by mixing. An industrially relevant example is provided by
reacting melts of highly viscous polymers, possibly characterized
by complex rheological behavior, whose molecular weight
distribution can depend heavily on the conditions of mechanical
agitation during the reaction time.6

Beyond its practical importance, the realm of laminar flows
also provides a simplified phenomenological framework for
understanding the essence of a mixing process, i.e., the interplay
between fluid mechanics (in the sense of advection), which
controls the increase of material interfaces and the formation
of spatially coherent structures, and diffusive transport, which
smoothens the concentration profiles and interfacial disconti-
nuities at shorter length scales.

If molecular diffusion is negligible, laminar mixing can be
very conveniently approached in a Lagrangian way, by con-
sidering the kinematics of a fluid particle5:

wherex(t) is particle position at timet andv the velocity field.
Formally, the analysis of mixing is thus translated into a problem
of dynamical system theory originated by the ordinary dif-
ferential eq 1. In a diffusionless setting, the efficient mixing of
two or more segregated species results in a complex intertwined

lamellar structure with different species organized in an alternate
array of striations. As time goes by, the interface between
neighboring striations is stretched and folded toward a nested
convoluted surface (a curve in two dimensions) that fills most
of the mixing space densely, albeit with a high degree of
nonuniformity. The overall growth rate of the interface is
exponential in time.

Recent works focusing on the evolution of interfaces in
laminar chaotic flows7-9 have proved that, after a transient, the
geometric features of the interface structure settle into a
stationary behavior regardless of the initial (i.e., premixed)
condition. The geometric template that governs chaotic advec-
tion thus depends uniquely upon the mixing protocol.

When diffusion is accounted for, the physical framing of
mixing is a more delicate problem. The current literature on
laminar chaotic flows with diffusion addresses this issue
primarily in statistical terms by focusing on the scaling of the
mean square displacement of a fluid particle advected by the
flow and subjected to random fluctuations in its motion.10-13

This is the classical approach to dispersion based on Monte
Carlo simulations, which rests on the equivalence between
diffusion and uncorrelated random processes.

The other classical (Eulerian) approach is based on the
solution of the corresponding advection/diffusion/(reaction)
equation in a continuum14. In this context, a significant
contribution on the effect of diffusion in the presence of reaction
is made by Sokolov and Blumen,15-19 who analyze the statistical
and scaling properties of lamellar systems in one- and two-
dimensional model structures. These structures are designed to
represent the state of a mechanically premixed system at a time
when the convective mixing has stopped, and reaction and
molecular diffusion are started (e.g., by suddenly increasing the
temperature of the system). Attention should also be drawn to
the approach based on lobe-dynamics proposed in ref 20, which
essentially involves application of the Melnikov theorem to
characterize transport in weakly perturbed integrable Hamilto-
nian flows.21

The strong impulse given by recent attempts toward the
understanding of mixing processes from a global geometric
standpoint suggests that the interplay between diffusion and
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advection could be approached in a slightly different perspective,
namely by determining how the invariant properties character-
izing the geometry of chaotic flows are modified by diffusion,
and consequently to what extent the theoretical results derived
on partially mixed structures in the absence of diffusion can be
applied to understand and predict the outcome of real mixing
processes. Remarkably enough, this point has been object of
intense discussion within thefast dynamocommunity, where
the physical background of the mathematical analysis is to
determine the conditions in which a magnetic field seed stirred
by a forcing convective flow can exhibit overall exponential
growth.22-24

In this article we try to approach this issue, without claiming
to offer a solution, by specifically focusing on phenomenological
features and orienting the analysis in a global geometric
perspective. In this respect, classical scaling laws on the
temporal behavior of the mean square displacement are of little
use, and attention is instead focused on the time evolution of
material interfaces subjected to diffusion. To achieve a quantita-
tive description of the phenomena, two basic quantities are
introduced, namely diffusional thickness, and area of diffusional
influence (see section 3 for a definition). The temporal behavior
of these quantities is analyzed by means of numerical simula-
tions on a model two-dimensional closed chaotic flow. This
analysis makes it possible to identify the global effect of
diffusion on the spatial configuration of partially mixed
structures. More specifically, it is possible to define a charac-
teristic time-scale,τD, up to which it is still reasonable to
envision mixing as a convective process of ever thickening
interfaces. At times shorter thanτD, the concentration fields of
the components being mixed therefore appear as blurred images
of the interface distribution corresponding to the purely advec-
tive limit. At times larger thanτD, the striations begin to merge
with one other, and the geometric structure inherited from the
convective template is irreversibly destroyed. From the scaling
of the diffusional thickness and the area of influence, it is also
possible to define an effective interface length, which provides
an overall measure of the combined action of convection and
diffusion.

As mentioned above, this article is essentially descriptive,
and its basic goal is to propose a new method of approaching
real mixing processes in closed chaotic flows. The remainder
is organized as follows. Section 2 provides a succinct description
of the invariant geometry of partially mixed structures in two-
dimensional time-periodic chaotic flows. Section 3 defines the
basic quantities related to the geometrical characterization of
the interplay between diffusion and advection as regards
interface evolution. Section 4 analyzes the numerical results
obtained for a model flow system that possesses all the
qualitative features of two-dimensional periodically forced
viscous flows. Section 5 briefly addresses how this approach
can help toward an understanding of chemical reactions in these
systems, at least in qualitative terms.

2. Global Geometry of Partially Mixed Structures

Many physicochemical phenomena that evolve in a fluid
system subjected to mixing are significantly controlled by the
geometry of interfacial structures. For example, a chemical
reaction between initially segregated species occurs as the
species diffuse into and encounter one another in a “reaction
zone” located around the interface (in the limit of an infinitely
fast reaction, this zone collapses onto the interface itself). This
process is clearly enhanced by the increase in interface length.
Loosely speaking, optimal yield and control conditions for a

reacting flow are associated with convective fields that can
distribute the interface densely through nearly all of the flow
domain while stretching it exponentially. The term “partially
mixed structures” generically indicates both the geometry of
closed interfaces and the spatial configuration of fluid elements
surrounded by these interfaces.

In the presence of nonlinear kinetics and/or spatially varying
flow fields, it is intuitively clear that a description of the system
based on a single overall parameter such as global interface
growth is likely to be insufficient, and the fine spatial details
of the interface distribution need to be taken into account.

As mentioned in the Introduction, passive interface dynamics
has recently been the object of intense investigation. This section
provides only a brief summary of the main results of these
studies. Those interested in the details are referred to the cited
literature.7-9,21,25

Consider a two-dimensional closed flow system generated
by a periodically forced velocity field that is chaotic on a given
subregionC of the flow domain (hereafter referred to as the
main chaotic region). As the flow is time-periodic, the kinemat-
ics can be studied in a stroboscopic time frame where snapshots
of the system are taken at multiple integers of the period, say
Tp. The time-discrete analogous of eq 1 is thus

where the mappingΦ (Poincare` map) yields the new position
xn+1 of a point located atxn after a timeTp.

Within the main chaotic regionC, let us now consider the
evolution of an interfaceγ (closed curve, boundary of a fluid
element) sampled at the period of the forcing term. The sequence
of curvesγn ) Φn(γ) for largen tends to fillC and to display
invariant patterns in their geometric structure. More specifically,
for sufficiently largen, the tangent vector toγn at a pointx ∈γn

is oriented in the direction of the unstable invariant subspace
at that point,εx

u. This implies that the set of all the one-
dimensional unstable invariant subspaces{εx

u}x∈C, referred to
as the unstable sub-bundle, is the intrinsic geometric template
that characterizes the asymptotic invariant geometry of partially
mixed structures.

To give an example, which will be used throughout the article,
let us consider a model flow on the two-dimensional torus, i.e.,
sine flow,26 the velocity field of which is given by

where

whereTp ) 2T is the period,n ) 0, 1,..., andVo is a constant.
With no loss of generality we may assumeVo ) 1 au. The
Poincare` map associated with the time-periodic velocity field
eq 3 can be expressed in closed form and is given by

Although sine flow is a highly idealized model, it is able to
capture the qualitative properties of physically realizable
periodically forced two-dimensional chaotic flows, and can be
used as a prototype of these systems for theoretical and
numerical investigation.

xn+1 ) Φ(xn) (2)

v ) (Vx, Vy)
T

Vx ) Vo sin(2πy), Vy ) 0, 2nT e t < (2n + 1)T
Vx ) 0, Vy ) Vo sin(2πx), (2n + 1)T e t < (2n + 2)T

(3)

Φ(x) ){x + T sin(2πy) mod. 1
y + T sin[2π(x + T sin(2πy))] mod. 1

(4)
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Figure 1 shows the evolution of a curveγ for T ) 0.8 at
times n ) 2, 3. The most striking feature is the geometric
invariance that characterizes the evolution of partially mixed
structures. This geometric invariance can be quantitatively
described by means of intermaterial interface density, as
developed elsewhere.8,9 Together with the scaling behavior of
interface length with time,27,28it constitutes the basic information
on the global evolution properties of partially mixed structure
in pure advection.

3. Characterization of Interface Evolution in the Presence
of Diffusion

From the discussion developed in section 2, it follows that
the salient features of the interplay between advection and
diffusion are mainly related to the modification of the geometric
properties of partially mixed structures. Scaling analysis of mean
square displacement in aperiodic flows is of little use in this
connection. In particular, very little information is provided
about partially mixed structures by analysis of the mean square
displacement of fluid particles in chaotic flows on the torus (such
as sine flow, or the ABC flow considered by Jones11), in which
the periodicity conditions of the mixing space (corresponding
to the compact topology of the torus) are relaxed and particle

motion is considered on an infinite Euclidean space (often used
to characterize diffusional effects in chaotic flows).

To account for the diffusional modifications induced on
interface dynamics, a natural starting point is to analyze the
spatiotemporal evolution of an interfacial mass discontinuity,
i.e., to consider a closed compact setI embedded in the flow
domain and track the evolution of the concentration field starting
from an initial condition where one of the species is concentrated
on the boundary∂I. In a continuum formulation, this leads to
the partial differential equation

equipped with the initial condition

whereδγo(x) is an impulsive (Dirac’s delta) function along the
initial interface (which is a closed surface), andA is a
normalization constant that makes the integral of the initial
condition over the whole mixing space (in this case the two-
dimensional torus) equal to unity. In eq 5Pe ) VL/D is the
Peclet number, i.e., the ratio of the characteristic diffusion time
to the characteristic convection time, whereV, L, and D are,
respectively, the reference velocity, length, and diffusivity of
the system. All the quantities in eq 5 are dimensionless. The
velocity field entering into eq 5 is given by eq 3, and the only
parameter characterizing advection is the half periodT.

Equations 5 and 6 correspond to the propagation of an initial
concentration discontinuity centered at the interface of separation
of two fluid elements. To give an example related to the toral
geometry of the mixing space characterizing sine flow, if the
two fluid species are initially segregated and placed, respec-
tively, in the left and right vertical portions (0< x < 1/2 and
1/2< x < 1), the initial interface consists of two circumferences
located respectively atx ) 0 and x ) 1/2, and the initial
condition is given by

With some precautionary steps, eq 5 can be solved numerically.
It is advisable to make use of a finite-volume formulation in
place of finite-difference schemes, as the latter can, if used
without due caution, produce numerical inconsistencies, such
as local negative values of the discretized concentration field
ψ. It is important to stress that eq 5 does not represent the
evolution of the intermaterial interface density (the equation for
which encompasses the effects of the deformation tensor in the
stretching of a material interface) but is the mass balance
equation associated with an initial interfacial discontinuity
corresponding to the initial segregation of the two fluid species.

The first problem to be solved is how to extract from eq 5
the relevant information about the implication of a diffusive
term in the evolution of partially mixed structures.

It is a fairly obvious step to approach interfacial dispersion
by considering the concentration isograms of the fieldψ. Initially
the fieldψ is localized with an impulsive profile at the interface
γo. The evolution ofψ(x, t) produces a progressive dispersion
and, att f ∞, ψ(x, t) ) ψ∞ ) 1, uniformly all over the mixing
space. To quantify the diffusive propagation, it is possible to
consider the graph of the level curvesψ(x, t) ) ψr, whereψr

is a constant reference value. The choice ofψr is arbitrary in
some respects. Its value should be chosen close to unity in order
to enhance the effect of diffusion but, as will be shown in the

Figure 1. Evolution of a material interfaceγo ) {x ) 1/2 0e y e
1} for the sine flow map eq 4 atT ) 0.8. (A) n ) 2, (B) n ) 3.

∂ψ
∂t

+ v‚∇ψ ) 1
Pe

∇2ψ (5)

ψ(x, t ) 0) ) Aδγo(x) (6)

ψ(x, t ) 0) )
δ(x) + δ(x - (1/2))

2
(7)

4910 J. Phys. Chem. A, Vol. 105, No. 20, 2001 Adrover et al.



next section, its value is not particularly important for the early
stages of the process, which are in any case those of greatest
significance. Two different values ofψr were chosen, namely
ψr ) 0.9 andψr ) 1, to show that the quantitative description
of the mixing process is weakly sensitive to the choice ofψr.

The isogram approach to dispersion leads to the following
definition of the domain of diffusional influence:

i.e., Dψr(t) is the set of points at which the concentration field
is higher than the reference valueψr. It follows from this
definition that a measure of the spatial extent of the diffusional
propagation is given by the normalized area of diffusional
influenceφψr(t) defined as

where mis(A) indicates the measure (or area in a two-
dimensional system) of the setA, andM is the mixing region
(in our case the two-dimensional torus). Of course, ifψr < 1
then limtf∞ φψr(t) ) 1.

The analysis of diffusion obtained by consideringφψr(t)
should be complemented by other information describing the
evolution in time of a characteristic thickness of the lamellar
structure associated with the spatial configuration of the domain
of diffusional influenceDψr(t). This can be achieved as follows.
Let x be a point belonging toDψr(t), and letB(x, ε) be a ball
of diameterε centered atx. The local diffusional thickness
dψr(x, t) at pointx can be defined as the diameter of the largest
ball centered at x and contained within Dψr(t), i.e.,
B(x, dψr(x, t)) ⊆ Dψr(t). Figure 2 shows a schematic picture
of the geometrical meaning ofdψr(x, t). The average of this
quantity overDψr(t) yields the diffusional thicknessdψr(t) at
time t:

In numerical simulations, this definition should be slightly
modified in order to account for the discretized description of
the mixing space, and to make its evaluation computationally
efficient. The local diffusion thickness at a lattice sitexi can be
defined a the minimum value between the diameters in the two

coordinate directionsx and y passing throughxi and fully
contained within the region of diffusional influence.

4. Numerical Results

Two values of the parameterT entering into eq 4 are
considered, namelyT ) 0.4,0.8. ForT ) 0.8 the main region
of chaotic behavior of eq 1 extends over nearly the whole torus,
while for T ) 0.4 islands of quasiperiodic motion are clearly
detectable. These landscapes of the mixing space represent the
two basic phenomenologies encountered in the kinematics of
passive tracers advected by chaotic flows. Peclet values range
in the interval 200÷ 5000, and the size of the discretized lattice
utilized to solve eq 5 ranges from 400× 400 to 1600× 1600
(the higher the Peclet number, the larger the lattice needed in
order to obtain accurate numerical results).

Figure 3 shows the evolution of the domain of diffusional
influenceDψr(t) for ψr ) 0.9 at the early stage of the process
(i.e., up to the first three-half periods) forPe ) 1000, starting
from the initial condition eq 7 corresponding to the interface
discontinuity between two fluid species distributed symmetri-
cally aroundx ) 1/2. The solid lines show the advection of the
initial interface.

As can be observed, up to timet ) 0.9 (Figure 3 a-c)), the
interfacial discontinuity progressively broadens while retaining
its characteristic geometrical form as a “fattened” curve. The
domainD0.9(t) resembles a “sausage” elongated in space and
centered about the advected initial interface. In this situation,
the diffusional thicknessdψr(t) defines an average measure of
the broadening of the original interface. Up to this time, diffusion
makes no qualitative change to the lamellar configuration of
partially mixed structures. At timet ) 1.0 (Figure 3 d) a drastic
change in the structure ofD0.9(t) occurs. Two lamellae centered
in different portions of the advected interface are brought by
advection up to a diffusional lengthscale and merging occurs.
We refer to this phenomenon as lamellae breakdown or merging,
and to the first time instant at which it occurs as the merging
time τD.

The picturresque terminology in the preceeding paragraph is
neither new nor original, being borrowed from the physical
description of chaotic attractors for dissipative sustems in the
presence of noise (“fat fractals”). Similarly, the description of
the structure ofDψr(t) as a “sausage” derives from the box-
counting methods (the Minkowski sausage) applied to fractal
sets and interfaces.

Surprisingly, lamellar breakdown takes place in the very early
stages of the mixing process, even at comparatively high Peclet
numbers (∼1000-5000). For example, atPe) 1000 andT )
0.8, τD is of the order of the first half period of motion.

The merging time is a significant factor for the fate of partially
mixed structures. As can be observed from Figure 3 e,f, the
structure ofD0.9(t) starts to deviate from the broadening of the
convective interfacial backbone slightly afterτD. This deviation
becomes significant after one period of motion, at which time
the interfacial convective backbone and the domain of diffu-
sional influence already look altogether different.

It might be supposed that diffusional effects will eventually
come to dominate after the first merging of neighboring
lamellae, and the area of diffusional influence will invade the
entire mixing space. This is not what happens, as can be
observed in Figure 3 g,h). The structure ofD0.9(t) rearranges
itself after the initial period to recreate a simple lamellar structure
that continues to be convected, stretched along the unstable
directions, and expanded in space due to diffusion in a
nonmonotonic way until perfectly mixed conditions are achieved.

Figure 2. Schematic representation of the geometrical meaning of the
diffusional thicknessdψr(x, t).

Dψr(t) ) {x|ψ(x, t) > ψr} (8)

φψr(t) )
mis(Dψr(t))

mis(M )
(9)

dψr(t) ) 1
mis(Dψr(t))

∫Dψr(t)
dψr(x, t) dx (10)
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This qualitative description indicates that the evolution of
partially mixed structures under the influence of diffusion
follows a nearly periodic process in which periodicity is a
consequence of diffusional merging of lamellae followed by
reorientation of the newborn lamella along the local unstable
invariant directions. The result of these processes is a non-
monotonic propagation of the diffusion front, the quantitative
properties of which are discussed below.

Let us first consider the behavior of the diffusional thickness
in the early stages of the process. Figure 4 A,B shows the
behavior ofd0.9(t) for sine flow atT ) 0.8 (Figure 4 A) and
during the first half period of motion (Figure 4 B). The latter
figure shows a nonmonotonic behavior of the diffusional
thickness, which displays a local maximum independently of
the Peclet number.

This phenomenon is a consequence of the interplay between
the diffusional broadening and the shrinking of the lamellar
structure along the stable directions. A simple dynamic model
for dψr(t) can be expressed as follows:

where

The first term on the right-hand side of eq 11 expresses the
rate of diffusional propagation, which is inversely proportional
to the Peclet number and to the square root of time. The second
term in eq 11 corresponds to the exponential shrinking along
the stable directions. Equations 11and 12 can be integrated to
yield

Equations 11 and 12 remain valid until different lamellae interact
with one other, i.e., up to time-scales of the order of the merging
time τD. Equation 13 yields a nonmonotonic behavior ofdψr(t),

which possesses a local maximum at a time instantτm

independently of the value of the Peclet number. This behavior
is confirmed by numerical simulations (see Figure 4 B), which
yield for τm the valuesτm ) 0.26 for T ) 0.8 andτm ) 0.27
for T ) 0.4 (the values of the exponentλs are equal to 3.0 and
2.8, respectively, in the two cases).

Figure 3. Spatial structure of the domain of diffusional influenceD0.9(t) (dotted region) obtained by solving eq 5 starting from the initial condition
(7) for T ) 0.8 andPe ) 1000. (a)t ) 0.1,( b) t ) 0.8, (c) t ) 0.9, (d) t ) 1.0, (e)t ) 1.2, (f) t ) 1.6, (g) t ) 2.0, (h) t ) 2.4. Solid lines are
the evolutions of the initial interface (circumferences at constantx located atx ) 0 andx ) 1/2) in the absence of diffusion.

ddψr(t)

dt
)

dσ(t)
dt

- λsdψr(t) (11)

σ(t) ) ( 4t
Pe)1/2

(12)

dψr(t) ) 2

Pe1/2
e- λst ∫0

t
eλsy2

dy (13)

Figure 4. (A) d0.9(t) vs t at T ) 0.8. (a)Pe ) 1000, (b)Pe ) 2000,
(c) Pe) 5000. (B) Snapshot of the first half period of motion. (a)Pe
) 1000, (b)Pe ) 2000, (c)Pe ) 5000.
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The validity of the model can be checked from its qualitative
predictions. From eq 13 it follows in fact that the normalized
diffusional thicknessd̂ψr(t), obtained by rescalingdψr(t) with
respect to the value attained at the local maximum, is indepen-
dent of the value ofPe. This means thatd̂ψr(t) is a master curve
onto which the numerical results obtained at different values
of the Peclet number should collapse. Figure 5 compares the
simulation results and eq 13 is depicted, showingd̂0.9(t) for T
) 0.4. This figure indicates a satisfactory level of agreement
between model predictions and simulations. The result is also
satisfactory in view of the fact that the process of shrinking
along the unstable directions is highly nonuniform in space, and
that the shrinking rate varies from point to point. It should also
be observed that the exponentλs is not an intrinsic asymptotic
property of the system, since the behavior shown in Figure 5
occurs in the very early stages of the mixing process and may
in principle depend on the location of the initial interface.

Let us now consider the behavior of the area of diffusional
influence. Figure 6 A,B shows the behavior ofφ0.9(t) andφ1.0(t)
vs time for different values of the Peclet number. In the early
stages of mixing, i.e., up tot = 2.4, the influence of the threshold
ψr is practically negligible. For longer times,φ0.9(t) saturates
toward unity whileφ1.0(t) attains small values, as expected, and
its dynamics is characterized by an oscillating behavior. The
different behavior ofφ0.9(t) and φ1.0(t) is important for a
qualitative understanding of the mixing process. The time instant
at whichφ0.9(t) saturates toward unity is a parameter related to
the time-scales at which the concentration field reaches an
almost uniform distribution over the whole mixing space. This
occurs att = 3.8 for Pe) 1000 andt = 5.5 for Pe) 5000 (T
) 0.8). The nonmonotonic behavior observed forφ0.9(t) below
t ) 2.4, and the oscillation characterizing the evolution ofφ1.0(t)
are a manifestation of contraction effects along the stable sub-
bundle in opposition to the irreversible diffusional broadening.

These oscillatory effects in diffusional propagation are the
most characteristic feature of chaotic flows. It is important to
stress that these phenomena are clearly detectable (and to the
best of our knowledge observed and discussed for the first time
in connection with laminar chaotic flows) by means of the
descriptive apparatus proposed in this article, but much more
difficulty to capture through standard statistical approaches.

Quantitative support of this latter observation is provided by
considering the mean square displacementσ2(t) ) 〈(x(t) -
〈x(t)〉)2〉 of an ensemble of passive particles (in the simulations
the number of particles is order 5× 105) initially located at a
pointxo. Being of absolutely no importance as regards the results

of the present analysis, the initial point was set atxo ) (1/2,
1/2). Figure 7 shows the behavior ofσ̃(t) ) σ(t)Pe1/2 at T )
0.8 for several values of the Peclet number. At short time scales,
σ̃(t) follows the scalingσ̃(t) ) (4t)1/2 (line d) in Figure 7), and
afterward increases in almost monotonic fashion toward satura-
tion. The small amplitude oscillations that can be observed close
to saturation are in fact indicative of the nonmonotonic evolution
of the area of diffusional influence, but it is more difficult to
infer geometric properties of partially mixed structures from
these results than from those relative toφψr(t) or dψr(t).

Another interesting piece of information that can be obtained
through the approach discussed in section 3 follows from another
simple geometric observation. Let us again consider Figure 3a,b.

Figure 5. Normalized diffusional thicknessd̂0.9(t) vs t at T ) 0.4.
Curve (a) is the theoretical prediction eq 13, curves (b) are the
simulation results forPe ) 1000, 2000, 5000 collapsing into a single
curve.

Figure 6. (A) φ0.9(t) vs t at T ) 0.8. (a)Pe ) 1000, (b)Pe ) 2000,
(c) Pe) 5000. (B)φ1.0(t) vs t atT ) 1.0. The arrow indicates increasing
values of the Peclet number,Pe ) 1000, 2000, 5000.

Figure 7. σ̃(t) ) σ(t)Pe1/2 vs t at T ) 0.8. (a)Pe ) 5000, (b)Pe )
2000, (c)Pe ) 1000. Line (d) isσ̃(t) ) (4t)1/2.
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For t < τD, the area of diffusional influence is organized around
a convective backbone given by the advected interface corre-
sponding to the initial discontinuity. It is a natural step to define
an effective interfacial lengthλd(t) as the ratio between the area
of diffusional influence and the diffusional thickness,

λd(t) will of course depend on the choice of the threshold value
ψr. Equation 14 can be viewed as a consequence of the fact
that the area of diffusional influence is centered around the
curvilinear backbone given by the advected initial interface, with
an average width equal to the diffusional thickness. Figure 8A,B
shows the behavior ofλd(t) for two values of the Peclet number
corresponding to the threshold valuesψr ) 0.9 andψr ) 1.0.
The dotted line is the scaling of the length of a material interface
(in the absence of diffusion)

where the exponentθ, known astopological entropy,29,30 is
strictly greater than the Liapunov exponent of the system.

For T ) 0.8, θ ) 2.33( 0.02. Figure 8 indicates that fort
< τD (τD = 1.0 forPe) 1000,τD ) 1.35 forPe) 5000),λd(t)
follows the convective scaling eq 15, and possesses its absolute
maximum in the neighborhood ofτD λd(t).

This leads to an alternative definition of the merging time as
the time instant at whichλd(t) reaches its maximum value.
Comparison of the behavior ofλd(t) for the two values of the

threshold considered indicates that the choice of the threshold
has no effect on the results up tot = 2.5. This provides further
support for the view that the results obtained are essentially an
intrinsic feature of the mixing process and do not depend on
the choice ofψr.

The maximum value ofλd(t) attained ranges fromλd = 6 for
Pe) 1000, up toλd ) 9.3 for Pe) 5000, thus indicating that
the maximum interfacial elongation attained in a diffusion-
convection process is rather low as a result of the merging
kinetics of neighboring lamellae.

The fact that the quantityλd(t) compares so well with the
stretching of an advected line in the early stage of the mixing
process bears out the idea that within this time frame the
combined action of chaotic advection and diffusion can be
spatially decoupled into two different processes, namely expo-
nential stretching along the local unstable directions (expressed
by λd(t)) and diffusional growth along the orthogonal direction
(expressed bydψr(t), thus confirming the physical meaning of
the quantities introduced.

5. Some Observations on Chemical Reactions

The qualitative and quantitative description of diffusion/
convection kinetics emerging from the approach developed in
this article can be used to achieve a better understanding of
other physicochemical processes evolving in mixing systems.

This section briefly considers the case of chemical reactions.
The aim is not to provide a thorough analysis of the complex
dynamics of reaction/diffusion kinetics in laminar chaotic flows,
but rather to outline how the description of mixing in the
presence of diffusion developed in sections 3 and 4 may be
helpful in situations that depart from a purely diffusive/
convective setting.

Let us consider an elementary bimolecular kinetics A+ B
f Product in a chaotic flow. The balance equations in
dimensionless form read as follows:

wherecA andcB are the concentrations of the two reactants,φ

is the Thiele modulus,φ2 ) kcrL2/D, wherek is the kinetic rate
coefficient for the second-order reaction,cr is a reference
concentration,L a characteristic lengthscale of the system, and
D the diffusivity. The reactants are initially segregated:cA(x,
t ) 0) ) 1 for 0 e x < 1/2, 0 e y < 1, while opposite
relationships hold for the other reactant,cB(x, t ) 0) ) 1 for
1/2 e x < 1, 0 e y < 1. This configuration corresponds to the
interfacial discontinuity eq 7 analyzed in sections 3 and 4. In
the simulation of eq 16 use was made of a finite-volume
algorithm. This is more robust that finite difference schemes in
that it prevents the occurrence of negative concentration values.

The major practical difficulty in approaching eq 16 is that,
despite the formal simplicity of the problem, very large lattices
are needed in order to obtain reliable numerical results.31,32

Moreover, the lattice size increases dramatically with the Peclet
number. To give an example, Figure 9 A) shows the time
behavior of the reactant concentrationCA(t) ) ∫cA(x, t)dx at
Pe) 1000 andφ 2/Pe) 10 (corresponding to a fast reaction),
for different lattice sizesN × N, starting fromN ) 100 toN )
800 (from the overall mass balance it directly follows that
CA(t) ) CB(t)). For this value of the Peclet number, reproducible

Figure 8. λd(t) vs t atT ) 0.8. (A)Pe) 1000, (B)Pe) 5000. Curves
(a) refer to the thresholdψr ) 0.9, curves (b) toψr ) 1.0. The dotted
line is the scalingλd(t) ∼ exp(θt/2T), with θ ) 2.33.
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and size-independent data are obtained for a 800× 800 lattice
(numerical results obtained for a 1200× 1200 lattice are nearly
indistinguishable from those corresponding to a 800× 800
lattice). ForPe) 5000, the lattice size required is of the order
of magnitude of 5000× 5000. This phenomenon has been
attributed to the creation of a complex lamellar structure formed
by regions in which one of the reactants is almost exclusively
present. The numerical results obtained in section 4 for
convection/diffusion processes suggest that this hypothesis does
not agree with the system evolution. Even at comparatively high
Peclet numbers, reaction-diffusion kinetics is not controlled
by the formation of hundreds of striations but rather by the
occurrence of sharp discontinuities in the concentration fields
of the two reactants that develop in a much simpler lamellar
structure composed of about 10 striations (even atPe) 5000).
This observation comes from analysis of the temporal behavior
of effective interfacial lengthλd(t). Since the dimensionless
characteristic length of the system is 1, the value ofλd(t) can
be roughly regarded as a measure of the total number of lamellae
in the mixing system.

This observation is further supported by a simple scaling
observation on the evolution of the reactant quantityCA(t).
Figure 9B shows the log-log plot of CA(t) vs t for the data of
Figure 9B. Starting fromt = 4-5, the conversion time curve

sets to the scalingCA(t) ∼ t-1 (dotted line) corresponding to
almost perfectly mixed conditions of the two reactants, and the
crossover time is of the same order of magnitude as the time
instant at whichφ0.9(t) saturates.

This result indicates that all the complex features of a
reaction-diffusion kinetics in chaotic flows occur at relatively
short time scales and involve only a few lamellae. The numerical
difficulties in simulating the evolution of reactive processes
should be therefore attributed to the space resolution in the
simulation of sharp discontinuities, which can be tackled by
means of specific numerical tools able to capture these features
at reasonable computer costs in terms of both CPU time and
memory requirements. To this end, wavelet collocations in the
form proposed by Vasilyev and Paolucci33,34 appear to be a
promising alternative to more classical numerical methods based
on finite differences or finite volumes. The analysis of fast
reaction kinetics in chaotic flows further indicates that the
characterization of partially mixed structures based on the area
of diffusional influence provides a measure for the time scales
at which almost perfectly mixed conditions are attained.

6. Concluding Remarks

This article develops a simple but physically significant
approach to the analysis of geometrical properties of partially
mixed structures under diffusion in two-dimensional chaotic
flows. In the early stages of the mixing process, the two
quantities introduced, namely effective interfacial lengthλd and
diffusional thicknessdψr make it possible to envisage the
intertwined actions of diffusion and convection quantitatively
as two spatially independent processes, i.e., a convective
stretching of the diffusional area in the local unstable direction
and a diffusional broadening in the orthogonal direction.

Extension to three-dimensional system is a straightforward
matter, as the approach is not grounded on any specific property
of two-dimensional structures.

Although the approach is grounded on an arbitrary choice of
the threshold levelψr, the results prove to be substantially
independent of this choice, at least for the early time-scales at
which most of the salient features occur.

Diffusional propagation in laminar chaotic flows is character-
ized by a nonmonotonic behavior resulting from the competition
between diffusional propagation, which tends to invade the
mixing space, and shrinking along the stable direction induced
by the chaotic nature of the kinematics. This phenomenon can
be clearly detected from the analysis of diffusional thickness at
short time scales before merging, the behavior of which can be
predicted correctly by a simple model, eq 11, taking into account
these two effects.

Another significant result stemming from this analysis is that
diffusion prevents the formation of a two-complex lamellar
structure, even for comparatively high values of the Peclet
number∼5000). The effective interfacial lengthλd(t) barely
reaches the value of 10 atPe) 2000-5000, and this indicates
that the complex features observed in the dynamics of reaction/
diffusion kinetics cannot be attributed to the formation of a
lamellar structure composed of hundreds or thousands of
striations, but rather to the occurrence of sharp discontinuities
in the mixing space at the interface between very few (usually
less than 10) lamellae.

The quantitative information on spatial structure and time
scales that can be obtained by the analysis, say, of the temporal
behavior of the area of diffusional influence in order to predict
the attainment of almost perfectly mixed conditions within the

Figure 9. CA(t) vs t for Pe) 1000. (A) The arrow indicates increasing
values of the lattice sizeN × N, N ) 100, 200, 400, 800. (B) log-log
plot of CA(t) vs t. The dotted lines is the scaling lawsCA ∼ t-1.
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system is in agreement with the scaling analysis of reaction-
diffusion kinetics in these systems.
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